

Implication Table Method

- 1. Construct a chart that contains a square for each pair of states.
- 2. Compare each pair in the state table. If the outputs associated with states i and j are different, place an X in square i-j to indicate that i!=j.
 If outputs are the same, place the implied pairs in square i-j. If outputs and next states are the same (or i-j implies only itself), i==j.
- 3. Go through the implication table square by square. If square i-j contains the implied pair m-n, and square m-n contains X, then i!=j, and place X in square i-j.
- 4. If any Xs were added in step 3, repeat step 3 until no more Xs are added.
- 5. For each square i-j that does not contain an X, i==j.

UAH-CPE/EE 422/522 ©AM

09/06/2003

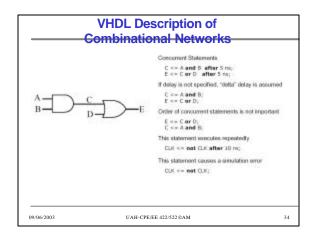
Intro to VHDL

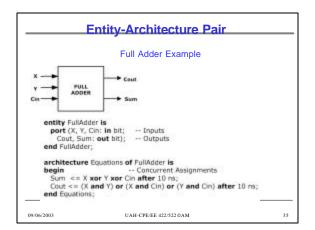
- · Technology trends
 - 1 billion transistor chip running at 20 GHz in 2007
- Need for Hardware Description Languages – Systems become more complex
 - Design at the gate and flip-flop level becomes
 - very tedious and time consuming
- HDLs allow
 - Design and debugging at a higher level before
 - conversion to the gate and flip-flop level - Tools for synthesis do the conversion
- VHDL, Verilog

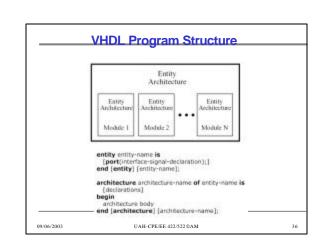
31

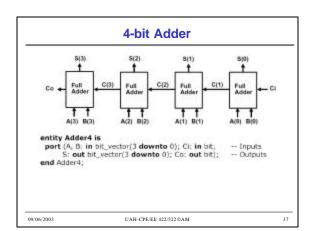
33

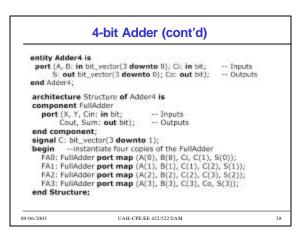
• VHDL - VHSIC Hardware Description Language

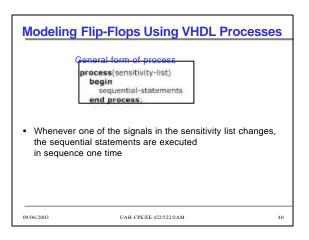

32

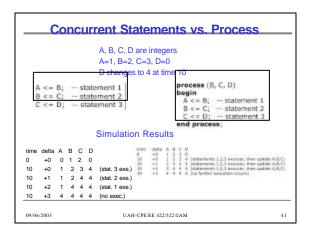

09/06/2003 UAH-CPE/EE 422/522 ©AM

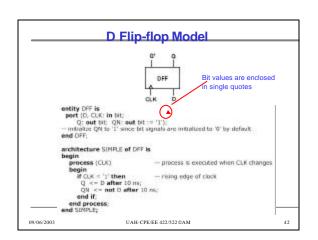

Intro to VHDL Developed originally by DARPA – for specifying digital systems International IEEE standard (IEEE 1076-1993) Hardware Description, Simulation, Synthesis Provides a mechanism for digital design and reusable design documentation Support different description levels – Structural (specifying interconnections of the gates), – Dataflow (specifying logic equations), and – Behavioral (specifying behavior) Top-down, Technology Dependent

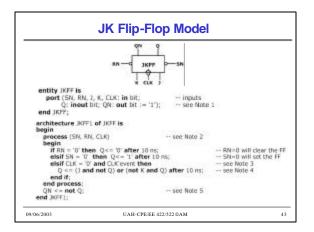


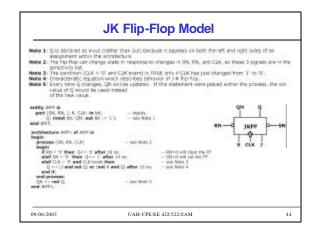

UAH-CPE/EE 422/522 ©AM

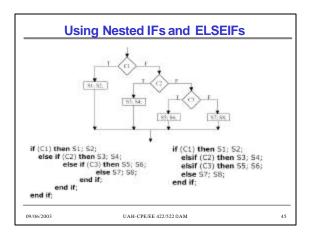









114	t A B C	o C C1	s s	put	the		signals on the output list
Eor	ce A 11	11	1.1	set	the	A	inputs to 1111
for	ce 8 00	01		set	the	ъ	inputs to 0001
for	ce Ci 1			set	the	e:	to 1
2.10	50			run	the		inulation for 50 ns
for	ce Ci 0						
for	ce A 01	01					
for	ce B 11	10					
1.01	50						
ne	delts		ь	eo.	e	ci	
D	+0	0000	0000	0	000	0	0000
0	+1	1111	0001	0	000	1	0000
10	+0	1111	0001		001		1111
20	+0	1111	0001	Ð	011		1301
3.0	+0	1111	0001	0	111	1	1001
4.0	+0.	1111	0001		111		0001
50	+0	0101	1110	1	111	0	0001
60	+0	0101	1110	1	110	0	0101
70	+0	0101	1110	1	100	0	0111
60	+0	0101	1110		100	0	0011



VHD	L Models for a l	NUX
NUX -	(not A and not B and 10) (not A and B and 11) or (A and not B and 12) or (A and B and 13); (X model using a conditional si)	
1.6	F <= [0 when Sel = 0 else [1 when Sel = 1 else [2 when Sel = 2 else [3;	Sel represents the integer equivalent of a 2-bit binary number with bits A and B
If a MUX model is used insid the MUX can be modeled us		
(cannot use a concurrent sta case 5d is when 0 => F <= 10; when 1 => F <= 11;	the case statement has case expression is when choice?	s the general form => sequential statements1 => sequential statements2
when 2 => F <= 12; when 3 => F <= 13; end case;	T	-> sequencial statements)
09/06/2003	UAH-CPE/EE 422/522 ©AM	46

	Models (1)	
<pre>library IEEE; use IEEE.std_logic_unsigned.all; entity SELECTOR is port {</pre>	architecture RTL 1 of SELECTOR is begin p0 - process (A, SEL) begin if (SEL='0000') then $Y \ll A(0)$; elsif (SEL='0001') then $Y \ll A(2)$; elsif (SEL='0010') then $Y \ll A(2)$; elsif (SEL='0011') then $Y \ll A(2)$; elsif (SEL='0011') then $Y \ll A(2)$; elsif (SEL='0101') then $Y \ll A(2)$; elsif (SEL='1011') then $Y \ll A(2)$; elsif (SEL='1011') then $Y \ll A(1)$; elsif (SEL='1011') then $Y \iff A(1)$; elsif (SEL='1011') then $Y \iff A(1)$; elsif (SEL='1011') then $Y \iff A(1)$; elsif (SEL='101') then $Y \iff A($	

MUX Models (2)				
library IEEE;	architecture RTL3 of SELECTOR is			
use IEEE.std_logic_1164.all;	begin			
use IEEE.std_logic_unsigned.all;	with SEL select			
entity SELECTOR is	Y <= A(0) when "0000",			
port (A(1) when "0001",			
A : in std_logic_vector(15 downto 0);	A(2) when "0010",			
SEL : in std_logic_vector(3 downto 0);	A(3) when "0011",			
Y : out std_logic);	A(4) when "0100",			
end SELECTOR;	A(5) when "0101",			
	A(6) when "0110",			
	A(7) when "0111",			
	A(8) when "1000",			
	A(9) when "1001",			
	A(10) when "1010",			
	A(11) when "1011",			
	A(12) when "1100",			
	A(13) when "1101",			
	A(14) when "1110",			
	A(15) when others;			
	end RTL3;			

	Vodels (3)	
<pre>library IEEE; use IEEE act_logicn164.all; use IEEE act_logicunsigned.all; entity SELECTOR is port (A :in std_logic_vector(15 downto 0); SEL: in std_logic_vector(3 downto 0); Y : out std_logic); end SELECTOR;</pre>	architecture RTL20f SELECTOR is begin p1 : process (A, SEL) begin case SEL is when '0000' => Y <= A(0); when '0001' => Y <= A(2); when '001' => Y <= A(2); when '0101' => Y <= A(2); when '0101' => Y <= A(3); when '0101' => Y <= A(5); when '0101' => Y <= A(5); when '0101' => Y <= A(5); when '0101' => Y <= A(6); when '0101' => Y <= A(1); when '1001' => Y <= A(1); when '101' => Y <= A(1); when '1101' => Y <= A(1); when '1101' => Y <= A(1); when '1101' => Y <= A(15); when '1101' => Y <= A(15); end case; end Process;	
09/06/2003 UAH-CF	PE/EE 422/522 ©AM	

MU	MUX Models (4)				
library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity SELECTOR is port (A : in std_logic_vector(15 downto 0) SEL: in std_logic_vector(3 downto 0 Y : out std_logic); end SELECTOR;					
09/06/2003	UAH-CPE/EE 422/522 ©AM	5(