
•1

CPE/EE 422/522
Advanced Logic Design

L04
Electrical and Computer Engineering
University of Alabama in Huntsville

09/06/2003 UAH-CPE/EE 422/522 AM 2

Outline

• What we know
– Combinational Networks

• Analysis, Synthesis, Simplification,
Hazards, Building Blocks, PALs, PLAs, ROMs

– Sequential Networks: Basic Building Blocks

– Design: Mealy
– Setup and hold times, Max clock frequency

• What we do not know
– Design: Moore

– Equivalent States
– State Table Reduction

– Intro to VHDL

09/06/2003 UAH-CPE/EE 422/522 AM 3

Review: Mealy Sequential Networks

General model of Mealy Sequential Network

(1) X inputs are changed to a new value
(2) After a delay, the Z outputs and next state appear at the output of CM
(3) The next state is clocked into the state register and the state changes

09/06/2003 UAH-CPE/EE 422/522 AM 4

Review: 8421 BCD to Excess3 BCD Code
Converter

x z
Q

00111001

11010001

01011110

10010110

00011010

11100010

01101100

10100100

00101000

11000000

t0t1t2t3t0t1t2t3

Z (outputs)X (inputs)

09/06/2003 UAH-CPE/EE 422/522 AM 5

Sequential Network Timing (cont’d)

Timing diagram assuming a propagation delay
of 10 ns for each flip-flop and gate
(State has been replaced with the state of three flip-flops)

09/06/2003 UAH-CPE/EE 422/522 AM 6

Setup and Hold Times

• For a real D-FF
– D input must be stable for a certain amount of time

before the active edge of clock cycle => Setup time
– D input must be stable for a certain amount of time

after the active edge of the clock => Hold time

• Propagation time: from the time the clock changes to the
time the output changes

Manufacturers provide minimum tsu, th, and maximum tplh, tphl

•2

09/06/2003 UAH-CPE/EE 422/522 AM 7

Maximum Clock Frequency

maxct - Max propagation delay through the combinational network

maxpt - Max propagation delay from the time the clock changes to the
flip-flop output changes { = max(tplh, tphl)}

ckt - Clock period

suckmaxpmaxc tttt −≤+

sumaxpmaxcck tttt ++≥

Example:

MHz
ns

f

ns*t

nst

,nst,nst

max

ck

gate

sumaxp

20
50

1

50515152

15

515

==

=++=

=

==

09/06/2003 UAH-CPE/EE 422/522 AM 8

Hold Time Violation

• Occur if the change in Q fed back through the
combinational network and cause D to change too soon
after the clock edge

hmincminp ttt ≥+

Hold time is satisfied if:

What about X?

sumaxcxx ttt +≥

Make sure that input changes propagate to the flip-flops inputs
such that setup time is satisfied.

Make sure that X does not change too soon after the clock.
If X changes at time ty after the active edge, hold time is satisfied if

mincxhy ttt −≥

09/06/2003 UAH-CPE/EE 422/522 AM 9

Moore Sequential Networks

Outputs depend only on present state!

))t(Q(F)t(Z =

x1
x2

xn

z1
z2

zm

Z = z1 z2 ... zm

X = x1 x2... xn
Q = Q 1 Q2... Qk

))t(Q),t(X(G)t(Q =+

Q

09/06/2003 UAH-CPE/EE 422/522 AM 10

General Model of
Moore Sequential Machine

))t(Q(F)t(Z =

Inputs(X)

Clock

Z = z1 z2 ... zm

X = x1 x2... xn
Q = Q 1 Q2... Qk

))t(Q),t(X(G)t(Q =+

Combinational
Network

State
Register

Next
State

Outputs depend only on present state!

Outputs(Z)

State(Q)

Combinational
Network

09/06/2003 UAH-CPE/EE 422/522 AM 11

Code Converter: Moore Machine

S0
0

S1
1

S2
0

S3
1

S4
0

S5
1

S8
0

S7
1

S6
0

S9
0

S10
1

0

NC C

1

0

NC

1

C C

0 1

NC NC C

NC NC

Start

0
1

1
0

0 1 0 1 0
1

0
1 0

1 0

09/06/2003 UAH-CPE/EE 422/522 AM 12

Code Converter: Moore Machine
S0
0

S1
1

S2
0

S3
1

S4
0

S5
1

S8
0

S7
1

S6
0

S9
0

S10
1

0

NC C

1

0

NC

1

C C

0 1

NC NC C

NC NC

Start

0

1
1

0

0 1 0 1 0

1

0
1 0 1 0

Do we need state S0?
How many states does Moore machine have?
How many states does Mealy machine have?

•3

09/06/2003 UAH-CPE/EE 422/522 AM 13

Moore Machine: State Table
S0
0

S1
1

S2
0

S3
1

S4
0

S5
1

S8
0

S7
1

S6
0

S9
0

S10
1

0

NC C

1

0

NC

1

C C

0 1

NC NC C

NC NC

Start

0
1

1
0

0 1 0 1 0

1

0
1 0 1 0

1S2S1S10

0S2S1S9

0-S10S8

1S10S9S7

0S10S9S6

1S8S7S5

0S8S7S4

1S7S6S3

0S5S4S2

1S4S3S1

0S2S1S0

X=1X=0

ZNS PS

Note: state S0 could be eliminated
(S0 == S9), if S9 was start state!

09/06/2003 UAH-CPE/EE 422/522 AM 14

Moore Machine Timing

• X = 0010_1001 => Z = 1110_0011

Moore

Mealy

09/06/2003 UAH-CPE/EE 422/522 AM 15

State Assignments

Guidelines to reduce the amount of combinational logic

1S2S1S10

0S2S1S9

0-S10S8

1S10S9S7

0S10S9S6

1S8S7S5

0S8S7S4

1S7S6S3

0S5S4S2

1S4S3S1

0S2S1S0

X=1X=0

ZNS PS

Rule I: (S0, S9, S10), (S4, S5), (S6, S7)
Rule II: (S1, S2), (S3, S4), (S4, S5), (S6, S7),
(S7, S8), (S9, S10)
Rule III: (S0, S2, S4, S6, S8, S9)
(S1, S3, S5, S7, S10)

S9 s10 S8

S5

S1 S3 S4

S0 S2 S7 S6

00 01 11 10

00

01

11

10

Q1Q2

Q3Q4

S0 – 0010
S1 - 0111
….
S10 - 0100

09/06/2003 UAH-CPE/EE 422/522 AM 16

Moore Machine: Another Example

• Coding schemes for serial data transmission
– NRZ: nonreturn-to-zero

– NRZI: nonreturn-to-zero-inverted
• 0 in input sequence – the bit transmitted is the same as the previous bit;
• 1 in input sequence – transmit the complement of the previous bit

– RZ: return-to-zero
• 0 – 0 for full bit time; 1 – 1 for the first half, 0 for the second half

– Manchester

A Converter for Serial Data Transmission: NRZ-to-Manchester

09/06/2003 UAH-CPE/EE 422/522 AM 17

Moore Network for NRZ-to-Manchester

09/06/2003 UAH-CPE/EE 422/522 AM 18

Moore Network for NRZ-to-Manchester

•4

09/06/2003 UAH-CPE/EE 422/522 AM 19

Synchronous Design

• Use a clock to synchronize the operation of all flip-flops,
registers, and counters in the system
– all changes occur immediately following the active clock edge
– clock period must be long enough so that all changes flip-flops,

registers, counters will have time to stabilize before the next active
clock edge

• Typical design: Control section + Data Section

Data registers
Arithmetic Units
Counters
Buses, Muxes, …

Sequential machine
to generate control signals
to control the operation of data section

09/06/2003 UAH-CPE/EE 422/522 AM 20

An Example

• Data section // s= n*(n+a) //
R1=n, R2=a // R1=s

• Design flowchart for SMUL
operation

• Design Control section
• S0 S1 F

0 0 B
0 1 B – C0
1 0 B + C0
1 1 A + B

R2 rd
ld LD(R2)

RD(R2)

16

L1cl
ldLD(L1)

CL(L1)

16

16

16

ALU
S0

S1
C0

LD(A) RD(A)

16

16

A
CL(A)

ld rd

cl

F

A B

16

R1rd
ldLD(R1)

RD(R1)

BR
LD(BR)

F
15..0

DEC(BR)
RD(BR)

16

rdld
dec

+BR0

16

C16

09/06/2003 UAH-CPE/EE 422/522 AM 21

Timing Chart for System with
Falling-edge Devices

09/06/2003 UAH-CPE/EE 422/522 AM 22

Timing Chart for System with
Rising-edge Devices

09/06/2003 UAH-CPE/EE 422/522 AM 23

Principles of Synchronous Design

• Method
– All clock inputs to flip-flops, registers, counters, etc.,

are driven directly from the system clock or from the
clock ANDed with a control signal

• Result
– All state changes occur immediately following the active

edge of the clock signal

• Advantage
– All switching transients, switching noise, etc., occur

between the clock pulses and have no effect on system
performance

09/06/2003 UAH-CPE/EE 422/522 AM 24

Asynchronous Design

• Disadvantage - More difficult
– Problems

• Race conditions: final state depends on the order in which variables
change

• Hazards

– Special design techniques are needed to cope with races and
hazards

• Advantages = Disadvantages of Synchronous Design
– In high-speed synchronous design propagation delay in wiring is

significant => clock signal must be carefully routed so that it reaches
all devices at essentially same time

– Inputs are not synchronous with the clock –
need for synchronizers

– Clock cycle is determined by the worst-case delay

•5

09/06/2003 UAH-CPE/EE 422/522 AM 25

To Do

• Read
– Textbook chapters 1.6, 1.7, 1.8, 1.10, 1.11, 1.12

09/06/2003 UAH-CPE/EE 422/522 AM 26

Equivalent States

• Two state are equivalent if we cannot tell them
apart by observing input and output sequences

Not practical => try all sequences (what is the length of sequence?)

Definition: Two states are equivalent si==sj only and only if, for every input
sequence X, the output sequences Z1 and Z2 are the same.

09/06/2003 UAH-CPE/EE 422/522 AM 27

Equivalent States

• Two state are equivalent Si == Sj if and only if for
every single input X, the outputs are the same and
the next states are equivalent

State Equivalence Theorem

09/06/2003 UAH-CPE/EE 422/522 AM 28

State Table Reduction

1) States a and h have the same next states
and outputs (when X=0 and X=1)

2) Eliminate h from the table and replace with a
3) States a and b have the same output =>

they are same iff c==d and f==e.
We say c-d and e-f are implied pairs for a-b.
To keep track of the implied pairs we make an implication chart.

09/06/2003 UAH-CPE/EE 422/522 AM 29

State Table Reduction

4) Make another pass through the chart.
E-g cell contains c-e and b-g;
since c-e cell contains x, c!=e => e!=g (put X).

5) Repeat the step 4 until no additional squares are
X-ed. {Put X in f-g, a-c, a-d, b-c, b-d squares}.

6) The remaining squares indicate equivalent state
pairs => a==b, c==d, e==f.

09/06/2003 UAH-CPE/EE 422/522 AM 30

State Table Reduction

•6

09/06/2003 UAH-CPE/EE 422/522 AM 31

Implication Table Method

• 1. Construct a chart that contains a square
for each pair of states.

• 2. Compare each pair in the state table. If the outputs
associated with states i and j are different, place an X in
square i-j to indicate that i!=j.
If outputs are the same, place the implied pairs in square i-j.
If outputs and next states are the same (or i-j implies only
itself), i==j.

• 3. Go through the implication table square by square.
If square i-j contains the implied pair m-n, and square m-n
contains X, then i!=j, and place X in square i-j.

• 4. If any Xs were added in step 3, repeat step 3 until no
more Xs are added.

• 5. For each square i-j that does not contain an X, i==j.

09/06/2003 UAH-CPE/EE 422/522 AM 32

Intro to VHDL

• Technology trends
– 1 billion transistor chip running at 20 GHz in 2007

• Need for Hardware Description Languages
– Systems become more complex
– Design at the gate and flip-flop level becomes

very tedious and time consuming

• HDLs allow
– Design and debugging at a higher level before

conversion to the gate and flip-flop level
– Tools for synthesis do the conversion

• VHDL, Verilog
• VHDL – VHSIC Hardware Description Language

09/06/2003 UAH-CPE/EE 422/522 AM 33

Intro to VHDL

• Developed originally by DARPA
– for specifying digital systems

• International IEEE standard (IEEE 1076-1993)
• Hardware Description, Simulation, Synthesis
• Provides a mechanism for digital design and

reusable design documentation
• Support different description levels

– Structural (specifying interconnections of the gates),
– Dataflow (specifying logic equations), and

– Behavioral (specifying behavior)

• Top-down, Technology Dependent
09/06/2003 UAH-CPE/EE 422/522 AM 34

VHDL Description of
Combinational Networks

09/06/2003 UAH-CPE/EE 422/522 AM 35

Entity-Architecture Pair

Full Adder Example

09/06/2003 UAH-CPE/EE 422/522 AM 36

VHDL Program Structure

•7

09/06/2003 UAH-CPE/EE 422/522 AM 37

4-bit Adder

09/06/2003 UAH-CPE/EE 422/522 AM 38

4-bit Adder (cont’d)

09/06/2003 UAH-CPE/EE 422/522 AM 39

4-bit Adder - Simulation

09/06/2003 UAH-CPE/EE 422/522 AM 40

Modeling Flip-Flops Using VHDL Processes

• Whenever one of the signals in the sensitivity list changes,
the sequential statements are executed
in sequence one time

General form of process

09/06/2003 UAH-CPE/EE 422/522 AM 41

Concurrent Statements vs. Process

Simulation Results

A, B, C, D are integers
A=1, B=2, C=3, D=0
D changes to 4 at time 10

time delta A B C D
0 +0 0 1 2 0
10 +0 1 2 3 4 (stat. 3 exe.)
10 +1 1 2 4 4 (stat. 2 exe.)
10 +2 1 4 4 4 (stat. 1 exe.)
10 +3 4 4 4 4 (no exec.)

09/06/2003 UAH-CPE/EE 422/522 AM 42

D Flip-flop Model

Bit values are enclosed
in single quotes

•8

09/06/2003 UAH-CPE/EE 422/522 AM 43

JK Flip-Flop Model

09/06/2003 UAH-CPE/EE 422/522 AM 44

JK Flip-Flop Model

09/06/2003 UAH-CPE/EE 422/522 AM 45

Using Nested IFs and ELSEIFs

09/06/2003 UAH-CPE/EE 422/522 AM 46

VHDL Models for a MUX

Sel represents the integer
equivalent of a 2-bit binary
number with bits A and B

If a MUX model is used inside a process,
the MUX can be modeled using a CASE statement
(cannot use a concurrent statement):

09/06/2003 UAH-CPE/EE 422/522 AM 47

MUX Models (1)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL1 of SELECTOR is
begin
p0 : process (A, SEL)
begin
if (SEL = "0000") then Y <= A(0);
elsif (SEL = "0001") then Y <= A(1);
elsif (SEL = "0010") then Y <= A(2);
elsif (SEL = "0011") then Y <= A(3);
elsif (SEL = "0100") then Y <= A(4);
elsif (SEL = "0101") then Y <= A(5);
elsif (SEL = "0110") then Y <= A(6);
elsif (SEL = "0111") then Y <= A(7);
elsif (SEL = "1000") then Y <= A(8);
elsif (SEL = "1001") then Y <= A(9);
elsif (SEL = "1010") then Y <= A(10);
elsif (SEL = "1011") then Y <= A(11);
elsif (SEL = "1100") then Y <= A(12);
elsif (SEL = "1101") then Y <= A(13);
elsif (SEL = "1110") then Y <= A(14);
else Y <= A(15);
end if;

end process;
end RTL1;

09/06/2003 UAH-CPE/EE 422/522 AM 48

MUX Models (2)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL3 of SELECTOR is

begin

with SEL select
Y <= A(0) when "0000",

A(1) when "0001",

A(2) when "0010",

A(3) when "0011",

A(4) when "0100",

A(5) when "0101",

A(6) when "0110",

A(7) when "0111",
A(8) when "1000",

A(9) when "1001",

A(10) when "1010",

A(11) when "1011",

A(12) when "1100",

A(13) when "1101",

A(14) when "1110",

A(15) when others;
end RTL3;

•9

09/06/2003 UAH-CPE/EE 422/522 AM 49

MUX Models (3)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL2 of SELECTOR is
begin
p1 : process (A, SEL)
begin
case SEL is

when "0000" => Y <= A(0);
when "0001" => Y <= A(1);
when "0010" => Y <= A(2);
when "0011" => Y <= A(3);
when "0100" => Y <= A(4);
when "0101" => Y <= A(5);
when "0110" => Y <= A(6);
when "0111" => Y <= A(7);
when "1000" => Y <= A(8);
when "1001" => Y <= A(9);
when "1010" => Y <= A(10);
when "1011" => Y <= A(11);
when "1100" => Y <= A(12);
when "1101" => Y <= A(13);
when "1110" => Y <= A(14);
when others => Y <= A(15);

end case;
end process;

end RTL2;

09/06/2003 UAH-CPE/EE 422/522 AM 50

MUX Models (4)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL4 of SELECTOR is

begin

Y <= A(conv_integer(SEL));
end RTL4;

