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Outline

• What we know
– Combinational Networks

• Analysis, Synthesis, Simplification,
Hazards, Building Blocks, PALs, PLAs, ROMs

– Sequential Networks: Basic Building Blocks

– Design: Mealy
– Setup and hold times, Max clock frequency

• What we do not know
– Design: Moore

– Equivalent States
– State Table Reduction

– Intro to VHDL
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Review: Mealy Sequential Networks

General model of Mealy Sequential Network

(1) X inputs are changed to a new value
(2) After a delay, the Z outputs and next state appear at the output of CM
(3) The next state is clocked into the state register and the state changes
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Review: 8421 BCD to Excess3 BCD Code 
Converter

x z
Q

00111001

11010001

01011110

10010110

00011010

11100010

01101100

10100100

00101000

11000000

t0t1t2t3t0t1t2t3

Z (outputs)X (inputs)
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Sequential Network Timing (cont’d)

Timing diagram assuming a propagation delay 
of 10 ns for each flip-flop and gate
(State has been replaced with the state of three flip-flops)
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Setup and Hold Times

• For a real D-FF 
– D input must be stable for a certain amount of time 

before the active edge of clock cycle => Setup time
– D input must  be stable for a certain amount of time

after the active edge of the clock => Hold time

• Propagation time: from the time the clock changes to the 
time the output changes

Manufacturers provide minimum tsu, th, and maximum tplh, tphl
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Maximum Clock Frequency

maxct - Max propagation delay through the combinational network

maxpt - Max propagation delay from the time the clock changes to the 
flip-flop output changes  { = max(tplh, tphl)}

ckt - Clock period

suckmaxpmaxc tttt −≤+

sumaxpmaxcck tttt ++≥

Example:
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Hold Time Violation

• Occur if the change in Q fed back through the 
combinational network and cause D to change too soon 
after the clock edge

hmincminp ttt ≥+

Hold time is satisfied if:

What about X?

sumaxcxx ttt +≥

Make sure that input changes propagate to the flip-flops inputs 
such that setup time is satisfied.

Make sure that X does not change too soon after the clock. 
If X changes at time ty after the active edge, hold time is satisfied if

mincxhy ttt −≥
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Moore Sequential Networks

Outputs depend only on present state!

))t(Q(F)t(Z =

x1
x2

xn

z1
z2

zm

Z = z1 z2 ... zm

X = x1 x2... xn
Q = Q 1 Q2... Qk

))t(Q),t(X(G)t(Q =+

Q
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General Model of 
Moore Sequential Machine

))t(Q(F)t(Z =

Inputs(X)

Clock

Z = z1 z2 ... zm

X = x1 x2... xn
Q = Q 1 Q2... Qk

))t(Q),t(X(G)t(Q =+

Combinational 
Network

State 
Register

Next 
State

Outputs depend only on present state!

Outputs(Z)

State(Q)

Combinational 
Network
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Code Converter: Moore Machine
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Code Converter: Moore Machine
S0
0

S1
1

S2
0

S3
1

S4
0

S5
1

S8
0

S7
1

S6
0

S9
0
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C C
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NC NC C

NC NC

Start

0

1
1

0

0 1 0 1 0

1

0
1 0 1 0

Do we need state S0?
How many states does Moore machine have?
How many states does Mealy machine have?
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Moore Machine: State Table
S0
0

S1
1

S2
0

S3
1

S4
0

S5
1

S8
0

S7
1

S6
0

S9
0

S10
1

0

NC C

1

0

NC

1

C C

0 1

NC NC C

NC NC

Start

0
1

1
0

0 1 0 1 0

1

0
1 0 1 0

1S2S1S10

0S2S1S9

0-S10S8

1S10S9S7

0S10S9S6

1S8S7S5

0S8S7S4

1S7S6S3

0S5S4S2

1S4S3S1

0S2S1S0

X=1X=0

ZNS PS

Note: state S0 could be eliminated 
(S0 == S9), if S9 was start state!
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Moore Machine Timing

• X = 0010_1001 => Z = 1110_0011

Moore

Mealy
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State Assignments

Guidelines to reduce the amount of combinational logic

1S2S1S10

0S2S1S9

0-S10S8

1S10S9S7

0S10S9S6

1S8S7S5

0S8S7S4

1S7S6S3

0S5S4S2

1S4S3S1

0S2S1S0

X=1X=0

ZNS PS

Rule I: (S0, S9, S10), (S4, S5), (S6, S7)
Rule II: (S1, S2), (S3, S4), (S4, S5), (S6, S7), 
(S7, S8), (S9, S10)
Rule III: (S0, S2, S4, S6, S8, S9)
(S1, S3, S5, S7, S10)

S9 s10 S8 

S5  

S1 S3 S4 

S0  S2  S7 S6

00 01 11 10

00

01

11

10

Q1Q2

Q3Q4

S0 – 0010
S1 - 0111
….
S10 - 0100
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Moore Machine: Another Example

• Coding schemes for serial data transmission
– NRZ: nonreturn-to-zero

– NRZI: nonreturn-to-zero-inverted
• 0 in input sequence – the bit transmitted is the same as the previous bit; 
• 1 in input sequence – transmit the complement of the previous bit

– RZ: return-to-zero
• 0 – 0 for full bit time; 1 – 1 for the first half, 0 for the second half

– Manchester

A Converter for Serial Data Transmission: NRZ-to-Manchester
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Moore Network for NRZ-to-Manchester
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Moore Network for NRZ-to-Manchester
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Synchronous Design

• Use a clock to synchronize the operation of all flip-flops, 
registers, and counters in the system
– all changes occur immediately following the active clock edge
– clock period must be long enough so that all changes flip-flops, 

registers, counters will have time to stabilize before the next active 
clock edge

• Typical design: Control section + Data Section

Data registers
Arithmetic Units
Counters
Buses, Muxes, …

Sequential machine
to generate control signals 
to control the operation of data section
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An Example

• Data section   // s= n*(n+a) // 
R1=n, R2=a // R1=s

• Design flowchart for SMUL 
operation

• Design Control section
• S0 S1  F

0    0   B
0    1   B – C0
1    0   B + C0
1    1   A + B

R2 rd
ld LD(R2)

RD(R2)

16

L1cl
ldLD(L1)

CL(L1)

16

16

16

ALU
S0

S1
C0

LD(A) RD(A)

16

16

A
CL(A)

ld rd

cl

F

A B

16

R1rd
ldLD(R1)

RD(R1)

BR
LD(BR)

F
15..0

DEC(BR)
RD(BR)

16

rdld
dec

+BR0

16

C16
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Timing Chart for System with 
Falling-edge Devices
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Timing Chart for System with 
Rising-edge Devices
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Principles of Synchronous Design

• Method
– All clock inputs to flip-flops, registers, counters, etc.,

are driven directly from the system clock or from the 
clock ANDed with a control signal

• Result
– All state changes occur immediately following the active 

edge of the clock signal

• Advantage
– All switching transients, switching noise, etc., occur 

between the clock pulses and have no effect on system 
performance
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Asynchronous Design

• Disadvantage - More difficult 
– Problems

• Race conditions: final state depends on the order in which variables 
change

• Hazards

– Special design techniques are needed to cope with races and 
hazards

• Advantages = Disadvantages of Synchronous Design
– In high-speed synchronous design propagation delay in wiring is 

significant => clock signal must be carefully routed so that it reaches 
all devices at essentially same time

– Inputs are not synchronous with the clock –
need for synchronizers 

– Clock cycle is determined by the worst-case delay
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To Do

• Read
– Textbook chapters 1.6, 1.7, 1.8, 1.10, 1.11, 1.12
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Equivalent States

• Two state are equivalent if we cannot tell them 
apart by observing input and output sequences

Not practical => try all sequences (what is the length of sequence?)

Definition: Two states are equivalent si==sj only and only if, for every input 
sequence X, the output sequences Z1 and Z2 are the same.
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Equivalent States

• Two state are equivalent Si == Sj if and only if for 
every single input X, the outputs are the same and 
the next states are equivalent

State Equivalence Theorem
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State Table Reduction

1) States a and h have the same next states 
and outputs (when X=0 and X=1)

2) Eliminate h from the table and replace with a
3) States a and b have the same output =>

they are same iff c==d and f==e. 
We say c-d and e-f are implied pairs for a-b.
To keep track of the implied pairs we make an implication chart.
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State Table Reduction

4) Make another pass through the chart.
E-g cell contains c-e and b-g; 
since c-e cell contains x, c!=e => e!=g (put X).

5) Repeat the step 4 until no additional squares are 
X-ed. {Put X in f-g, a-c, a-d, b-c, b-d squares}.

6) The remaining squares indicate equivalent state 
pairs => a==b, c==d, e==f.
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State Table Reduction
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Implication Table Method

• 1. Construct a chart that contains a square 
for each pair of states.

• 2. Compare each pair in the state table. If the outputs 
associated with states i and j are different, place an X in 
square i-j to indicate that i!=j.
If outputs are the same, place the implied pairs in square i-j. 
If outputs and next states are the same (or i-j implies only 
itself), i==j.

• 3. Go through the implication table square by square. 
If square i-j contains the implied pair m-n, and square m-n 
contains X, then i!=j, and place X in square i-j.

• 4. If any Xs were added in step 3, repeat step 3 until no 
more Xs are added.

• 5. For each square i-j that does not contain an X, i==j.
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Intro to VHDL

• Technology trends
– 1 billion transistor chip running at 20 GHz in 2007

• Need for Hardware Description Languages
– Systems become more complex
– Design at the gate and flip-flop level becomes 

very tedious and time consuming

• HDLs allow
– Design and debugging at a higher level before 

conversion to the gate and flip-flop level
– Tools for synthesis do the conversion

• VHDL, Verilog
• VHDL – VHSIC Hardware Description Language
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Intro to VHDL

• Developed originally by DARPA
– for specifying digital systems 

• International IEEE standard (IEEE 1076-1993)
• Hardware Description, Simulation, Synthesis
• Provides a mechanism for digital design and 

reusable design documentation
• Support different description levels

– Structural (specifying interconnections of the gates), 
– Dataflow (specifying logic equations), and 

– Behavioral (specifying behavior)

• Top-down, Technology Dependent
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VHDL Description of 
Combinational Networks
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Entity-Architecture Pair

Full Adder Example
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VHDL Program Structure
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4-bit Adder
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4-bit Adder (cont’d)
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4-bit Adder - Simulation
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Modeling Flip-Flops Using VHDL Processes

• Whenever one of the signals in the sensitivity list changes, 
the sequential statements are executed 
in sequence one time 

General form of process
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Concurrent Statements vs. Process

Simulation Results

A, B, C, D are integers
A=1, B=2, C=3, D=0
D changes to 4 at time 10

time  delta  A   B   C   D
0        +0     0   1   2    0
10 +0     1    2   3   4    (stat. 3 exe.)
10      +1     1    2   4   4    (stat. 2 exe.)
10 +2     1    4   4   4    (stat. 1 exe.)
10      +3     4    4   4   4    (no exec.)
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D Flip-flop Model

Bit values are enclosed 
in single quotes
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JK Flip-Flop Model
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JK Flip-Flop Model
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Using Nested IFs and ELSEIFs
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VHDL Models for a MUX

Sel represents the integer
equivalent of a 2-bit binary 
number with bits A and B

If a MUX model is used inside a process, 
the MUX can be modeled using a CASE statement
(cannot use a concurrent statement):
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MUX Models (1)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A   : in  std_logic_vector(15 downto 0);

SEL : in  std_logic_vector( 3 downto 0);

Y   : out std_logic);

end SELECTOR;

architecture RTL1 of SELECTOR is
begin
p0 : process (A, SEL)
begin
if    (SEL = "0000") then       Y <= A(0);
elsif (SEL = "0001") then      Y <= A(1);
elsif (SEL = "0010") then      Y <= A(2);
elsif (SEL = "0011") then      Y <= A(3);
elsif (SEL = "0100") then      Y <= A(4);
elsif (SEL = "0101") then      Y <= A(5);
elsif (SEL = "0110") then      Y <= A(6);
elsif (SEL = "0111") then      Y <= A(7);
elsif (SEL = "1000") then      Y <= A(8);
elsif (SEL = "1001") then      Y <= A(9);
elsif (SEL = "1010") then      Y <= A(10);
elsif (SEL = "1011") then      Y <= A(11);
elsif (SEL = "1100") then      Y <= A(12);
elsif (SEL = "1101") then      Y <= A(13);
elsif (SEL = "1110") then      Y <= A(14);
else      Y <= A(15);
end if;

end process;
end RTL1;
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MUX Models (2)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A   : in  std_logic_vector(15 downto 0);

SEL : in  std_logic_vector( 3 downto 0);

Y   : out std_logic);

end SELECTOR;

architecture RTL3 of SELECTOR is

begin

with SEL select
Y <= A(0)  when "0000", 

A(1)  when "0001", 

A(2)  when "0010", 

A(3)  when "0011", 

A(4)  when "0100", 

A(5)  when "0101", 

A(6)  when "0110", 

A(7)  when "0111", 
A(8)  when "1000", 

A(9)  when "1001", 

A(10) when "1010", 

A(11) when "1011", 

A(12) when "1100", 

A(13) when "1101", 

A(14) when "1110", 

A(15) when others; 
end RTL3;
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MUX Models (3)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A   : in  std_logic_vector(15 downto 0);

SEL : in  std_logic_vector( 3 downto 0);

Y   : out std_logic);

end SELECTOR;

architecture RTL2 of SELECTOR is
begin
p1 : process (A, SEL)
begin
case SEL is

when "0000" => Y <= A(0);
when "0001" => Y <= A(1);
when "0010" => Y <= A(2);
when "0011" => Y <= A(3);
when "0100" => Y <= A(4);
when "0101" => Y <= A(5);
when "0110" => Y <= A(6);
when "0111" => Y <= A(7);
when "1000" => Y <= A(8);
when "1001" => Y <= A(9);
when "1010" => Y <= A(10);
when "1011" => Y <= A(11);
when "1100" => Y <= A(12);
when "1101" => Y <= A(13);
when "1110" => Y <= A(14);
when others => Y <= A(15);

end case;
end process;

end RTL2;
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MUX Models (4)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A   : in  std_logic_vector(15 downto 0);

SEL : in  std_logic_vector( 3 downto 0);

Y   : out std_logic);

end SELECTOR;

architecture RTL4 of SELECTOR is

begin

Y <= A( conv_integer(SEL));
end RTL4;


